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Absence of Absolutely Continuous 
Spectrum of Floquet Operators 

Main  Joye  ~ 

Received November 22, 1993 

The spectrum of the Floquet operator associated with time-periodic perturba- 
tions of discrete Hamiltonians is considered. If the gap between successive 
eigenvalues ).j of the unperturbed Hamiltonian grows as 2 j -2 /_ l - - - j  = and 
the multiplicity of 2j grows as jt~ with ct > fl 1> 0 as j tends to infinity, then the 
corresponding Floquet operator possesses no absolutely continuous spectrum 
provided the perturbation is smooth enough. 

KEY WORDS: Time-periodic Hamiltonians; spectrum of Floquet operators; 
quantum stability; perturbation of dense point spectra. 

1. I N T R O D U C T I O N  

Consider  a posit ive self-adjoint  Hami l ton ian  Ho on a separable  Hi lber t  
space W with discrete spect rum {2j}j= ~ ...... and W(t)  a symmetr ic  time- 
dependent  per iodic  pe r tu rba t ion  

W(t + 2rt) = W(t),  V t e R  (1.1) 

The associated F loque t  opera tor ,  defined by 

0 
F =  - i  ~ + Ho + W(t)  (1.2) 

on L2[0,2~z] Q , . ~  with per iodic  bounda ry  condi t ions  in t, has been the 
object  of considerable  interest recently. More  precisely, the nature  of the 
spectrum of F, tr(F), has been investigated thoroughly  for specific models  
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and for more general situations as well, as reviewed by Bellissard t~ and 
more recently by Jauslin/121 The interest of such detailed studies for physics 
lies in the fact that the long-time behavior of the solutions r of the time- 
dependent Schr6dinger equation 

i - ~ O ( t ) = ( H o +  W(t))~k(t),  ~b(0) = r (1.3) 

is closely related to the spectral properties of the Floquet operator. This 
asymptotic behavior of the solutions of (1.3) is quite relevant for the study 
of quantum stability or quantum chaos/L 12~ Let U(t) be the unitary evolu- 
tion associated with (1.3) such that 

~(t)  = U(t)cp (1.4) 

As a consequence of the periodicity of the Hamiltonian Ho+ W(t), the 
solution of (1.3) satisfies 

~b(n2n) = U(2n)" ~p, Vn~N (1,5) 

where U(2n) is the monodromy operator. The large-n behavior of ff(n2n) 
is thus clearly dependent on the spectral subspace (pure point, absolutely 
or singular continuous) of U(2n) in which the initial condition tp is chosen, 
as discussed in refs. 1 and 12. On the other hand, the spectral properties of 
the Floquet operator F and of the monodromy operator U(2n) are equiv- 
alent, as established in refs. 20 and 7. Note that this type of approach can 
be generalized in order to study the stability of the quantum dynamics 
when the perturbation W(t)  is quasiperiodic in time, as demonstrated 
recently in ref. 3. 

From the mathematical point of view, these considerations pertain to 
the perturbation theory of operators with dense pure point spectrum. 
Indeed, if W(t)-0,  the spectrum of the Floquet operator is given by 
{n+2j} "~z which is generically dense on the real line. Corre- j =  1,,.., oo ~ 

spondingly, the spectrum of the associated monodromy operator Uo(2n ) 
consists of the set {e-2~;J}j=l ....... which generically fills the unit circle 
densely. The question is the following: does this pure point spectrum 
remain stable after perturbation by the time-periodic operator W(t)? 
Although this problem is in general rather delicate, ~8~ a rigorous complete 
positive answer can be given for certain specific models, in some range of 
parameters, for example, the pulsed rotor considered by Bellissard, ~1 some 
time-dependent quadratic Hamiltonians studied by Hagedorn et al., ~6~ a 
class of time-dependent perturbations of the harmonic oscillator, and dis- 
crete Hamiltonians kicked periodically by some rank-0ne perturbations as 
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shown by Combescure. t4"51 On the other hand, results valid for general 
systems are scarce and they provide only a partial answer to the above 
question. These results are based on the search for general criteria allowing 
one to exclude the presence of absolutely continuous spectrum in the 
Floquet operators. This approach was initiated and developed by Howland 
in a series of papers. 19-~) Such results yield a partial answer to our question 
in the sense that they say nothing about a singular continuous spectrum. 
However, the absence of an absolutely continuous component trac(F) in 
the spectrum of F is sometimes already considered as a stability result. The 
criteria obtained are of the following form. Assume the Hamiltonian H 0 has 
simple eigenvalues 21 < 2z < ... < ;tj < ... satisfying the growth condition 

; t j - 2 j_ , - - - j~  (1.6) 

for some ~ > 0  and suppose that W(t) is uniformly bounded. Then it is 
proven in ref. 10 that aac(F)= ~ '  for any ct > 0 provided W(t) is smooth 
enough. Actually, this result is also true for some class of unbounded pertur- 
bations W(t), as discussed in ref. 11, and it is even shown in ref. 9 that a(F) 
is generically dense pure point, in an appropriate probabilistic sense, 
provided ~ > 2. However, the restriction imposed on the eigenvalues of Ho 
to be nondegenerate was conjectured in ref. 10 to be technical only. Indeed, 
the result is expected to hold for the pulsed rotor of Bellissard, a case where 
the corresponding eigenvalues satisfy (1.6) but are doubly degenerate. 
Accordingly, it was proven recently by Nenciu 1~7~ that aac(F)= ~ if the 
growth condition (1.6) is satisfied, and if the multiplicity mj of the eigen- 
values 2j is uniformly bounded in j, provided W(t) is smooth enough. 
However, to prove this result, it was necessary to impose another technical 
condition, namely ~ > 1/2. 

In this paper we reconsider the absence of absolutely continuous 
spectrum of Floquet operators in the generalization due to Nenciu ~7) of the 
framework designed by Howland 19-~) (see below). We improve the preced- 
ing results in two ways. First, we remove the technical condition ct > 1/2 to 
give a complete proof of the conjecture of Howland ~~ in the degenerate 
case for any positive cc Second, and more important, we can allow the 
degeneracy mj of the eigenvalues 2j to increase with j as mj "- ja, with fl < cc 
This generalization may be of interest for the study of systems of more than 
one degree of freedom since in such cases the degeneracy is likely to increase 
with the principal quantum number. See, however, the remarks following 
the main Theorem 2.1. 
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2. RESULT A N D  STRATEGY 

Let H o be an operator satisfying the following spectral hypothesis S: 

1. Ho is densely defined on D c of', self-adjoint, and positive. 

2. ,7(/-/'o) = Uj~ ~j. 
3. aj consists of a finite number of finitely degenerate eigenvalues 

such that: 

(a) m a x a , r  ~<Co. 

(b) dist(aj, aj_~)>~c~j ~, ~>0 .  

(c) mult(aj) ~< c2j t3, ~ >10. 

Here Co, c~, c2, c~, and/~ are independent ofj .  

Let W(t) be an operator satisfying the regularity condition Rk: 

1. W(t) is bounded and symmetric u e R. 

2. W(t) is strongly C k, VteR. 

The operator Ho+  W(t) is thus self-adjoint, densely defined on D 
(ref. 15, Theorem 4.3, p. 287), and strongly C k, with bounded derivatives. If 
k>~ I, there exists a unitary evolution operator U(t), strongly C ~ on D, 
which maps D into D and satisfies for any ~0 in D and t e R 

d 
i ~  U(t)qg=(Ho+ W(t)) U(t)q~, U ( 0 ) = I  (2.1) 

as can be deduced from Theorem X70. n9) 

T h e o r e m  2.1. Let Ho satisfy S and W(t) be 2re-periodic in t and 
satisfy R k, with k~>l. If a>f l~>0 and k>~[(l+fl)/o~]+l, then 
aac(U(2~z)) = ~3. 

Remarks. Setting fl = 0, we obtain the conjecture of Howland (~~ for 
any c(>0. 

It is possible to weaken the spectral hypothesis S somehow since the 
result also holds if the size of the spectral sets ej grows as 

max 12-#1 <<.coj = (2.2) 
2.,u E a~ 

As already noticed, the above theorem describes a(U(2n)) only partially. 
However, the result is not of perturbative nature, in the sense that the 
norm of the operator W(t) can be arbitrarily large. By contrast, the com- 
plete characterization of a(F) performed by Bellissard (~ and Combescure 141 
on their models can be achieved in regimes where II W(t)ll is small enough. 
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This result can also be useful for some cases where W(t) is unbounded. 
Indeed, it is shown in ref. 11 how to reduce the study of the Floquet 
operator - i  a/at + Ho + W,(t), where W,,(t) belongs to a certain class of 
unbounded operators, to the study of - i  a/at + Ho + Wb(t), where Wb(t ) is 
bounded. And, according to the final remark of w in ref. 11, a similar 
procedure can be applied when Ho has degenerate eigenvalues. 

As noted in ref. 12, this type of result is likely to apply to one-degree- 
of-freedom systems essentially, because of the growth condition on the 
gaps between successive eigenvalues in hypothesis S. This impression is 
strengthened by the supplementary condition imposed on the growth of the 
multiplicity of eigenvalues. Indeed, consider the simple two-degree-of- 
freedom system given by a free rotator in R 3. The Hamiltonian of the 
system is Ho = j2, where J denotes the angular momentum operator. The 
gaps between the eigenvalues 2 j = j ( j +  1) of Ho do satisfy the growth 
condition with exponent ct = 1, 

j ( j+  1)-- ( j - -  1 ) j =  2j (2.3) 

However, the multiplicity of these eigenvalues grows as 

mult(2j) = 2 j+  1 (2.4) 

so that the exponent fl = 1 and the condition ct >/3 is not satisfied. This is 
nevertheless in agreement with the fact that multidimensional systems seem 
to be more inclined to instabilities. ~2~ Note that if we consider formally 
H o = J  4, the corresponding eigenvalues 2j=j2( j+l)2  and their multi- 
plicities behave in the proper way with exponents ~ = 3 and/3 = 1. 

The strategy followed to prove results of this type, which is common 
to refs. 10 and 17 and the present work, is based on the few general 
theorems on the stability of the absolutely continuous spectrum. In ref. 10, 
where the Floquet operator F is considered, Howland shows by means of 
a KAM-inspired procedure that F is unitarily equivalent to an operator 
Fo + R, where Fo is self-adjoint and has a pure point spectrum and R is 
trace class. Then it remains to invoke the Kato-Rosenblum theorem 
(ref. 15, Theorem 4.4, p. 540) stating that the absolutely continuous sub- 
spaces of self-adjoint operators are unitarily equivalent if they differ by a 
trace-class operator. Nenciu ~7~ deals with the monodromy operator U(27t) 
instead of F, and uses recently developed tools in the adiabatic theory ~8~ 
to approximate U(2n) by V+ R, where V is a unitary operator having pure 
point spectrum and R is trace class. The result is thus achieved by virtue 
of the Birman-Krein theorem, ~2~ an equivalent of the Rosenblum-Kato 
theorem for unitary operators, which assesses that the absolutely con- 
tinuous spectral subspaces of unitary operators are unitarily equivalent if 
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they differ by a trace-class operator. Our proof of Theorem 2.1 follows the 
latter method proposed by Nenciu; however, we make use of another 
adiabatic approximation technique developed in refs. 13 and 14. In the 
present context, where no small parameter appears, this method proves to 
be very efficient as well. Indeed, its relative simplicity makes it possible to 
obtain the accurate estimates which are needed to bound operators in the 
trace norm and to extend the previous results as described in Theorem 2.1. 

3. PROOF 

We present in this section the proof of Theorem2.1 based on the 
adiabatic techniques developed in ref. 14. In doing so, we make use of some 
intermediate results which will be proven in the next technical section. 

3.1. Prel iminaries 

Let us first consider the stability of the spectral hypothesis S. 

L e m m a  3.1. Let H o satisfy S and let B(t) satisfy R o. Then 
Ho+ B(t) satisfies S uniformly in t e [0, 2~z] with the same exponents 
and ft. 

Proof. The uniform boundedness of B(t) and the growth condition 
on the gaps ensure that a(Ho + B(t)) consists of the disjoint union of new 
sets 0~= ,  a'k(t). Hence, taking into account a possible relabeling, the gaps 
between these sets behave as 

dist(a~.(t), a~._ 1(/)) >/cl(k + r) =/> c'tk ~ (3.1) 

for large k. Moreover, it is readily seen by considering the interpolating 
operator Ho + xB(t), where x ranges in [0, 1 ], that 

mult(a~.(t)) = mult(ak + r) <~ C'2 ka (3.2) 

for k large enough. 1 

Notation. There will appear several constants in the sequel which we 
shall denote generically by the same symbol c. From now on, the time 
derivative will be denoted by a prime. 

Consider the operator H o + B(t), where Ho satisfies S and B(t) satisfies 
Ro. Let R(t, 2 ) =  ( H o + B ( t ) - 2 )  -~. By the above lemma, for t e  [0, 2rt], 
the spectrum a(t) of Ho+B( t  ) consists of spectral sets aj(t) and the 
associated spectral projectors Pj(t) can be written as 

Pj(t)= - ~ n i  R(t, 2)d2 (3.3) 
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where the nonintersecting paths Fj surrounding trj(t) are chosen in such a 
way that 

long(Fj) = [ Fj[ ~ cj = (3.4) 

and 

dist(Fj, or(t)) t> cj ~ (3.5) 

Remark. Both estimates (3.4) and (3.5) are true for appropriate 
paths F i if the length of the sets aj(t) grows as j ' ,  in the spirit of the first 
remark below Theorem 2.1. 

Proposition 3.1. Let Ho satisfy S, B(t) satisfy R,,, n/> 1, and Py(t) 
be defined by (3.3). Then, if ~>fl>_-0, the operator 

K(t) = L Pj(t)  Pj(t)  
j = l  

is bounded, strongly C"-  ~, n >i 1, on [0, 2n], and such that K(t)* = -K( t ) .  

Remark. The content of this proposition is nontrivial for a ~< 1/2; see 
ref. 17. 

Actually, the proposition is a consequence of the following technical 
result. 

Lemma 3.2. Assume Ho satisfies S, B(t) satisfies Ro, and let 

G(t) = Pj(t)  ~ Aj(t,  2) R(t, 2) d2 
j = l  

where 

C 
sup sup IIAj(t,A)II 

t 6 [0 ,2n]  2 e F j  

Then, if ct > fl >1 O, G(t) is bounded and strongly continuous Vt e [0, 27r]. If, 
furthermore, B(t) satisfies R~ and Aj(t,  2) is strongly C ~ with 

C 
sup sup IIAj(/, A)II ~ - -  

te [O, 2n] ,i, e Fj J~ 

then G(t) is strongly C' ,  Vte [0, 27r], and 

G'(t) = G~(t) - Go(t) G(t) 
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where Go(t) and G~(t) have the same form as G(t) with 

A~ 2) = R(t, 2) B'(t) 

and 

Joye 

A)(t, 2) = P)(t) Aj(t, 2) + Aj(t, 2) - Aj(t, 2) R(t, 2) B'(t) 

in place of Aj (t, 2). 

Remark. The operator Go(t) coincides with the operator K(t) of the 
proposition since 

R'(t, 2 ) =  -R(t ,  2) B'(t) R(t, 2) (3.6) 

Prop[ of Proposition 3. 1. Since Ho + B(t) satisfies S uniformly in 
tE [0, 2rc], we have by (3.5) 

r 

IIR(t, 2)1~.~ rill ~<~ (3.7) 

which yields the required bound on A~ 2). Hence K(t) is bounded 
provided e >/~ >1 0. Now, if B(t) is strongly C', the same is true for R(t, 2) 
[see (3.6)] and using the Leibnitz formula or Eq. (2.36) in ref. 14, we get 

( 8 )  m ~rj c 
R(t, 2)1~ ~<f~, Vm<~n (3.8) 

Consequently, A~ 2) is strongly C m- ~ and 

( 0 ) "  
N A (t, 4 7 (3.9) 

uniformly in 2eFj  and t e I-0, 2g], for all m ~ n - 1 .  Thus, as is easily 
checked, the formula of Lemma 3.2 can be iterated since, using (3.4), (3.6), 
and (3.8), 

c 
~ j  Pj(t) <~]g, Vl<~m<.n (3.10) 

The identity K(t)* = -K(t)  results from the self-adjointness of the projec- 
tors Pj(t) and the identity 

0 =  ~. P ; ( t )=  ~ (Pj(t)P~(t)+Py(t)Pj(t)) l (3.11) 
j=O j=O 
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3.2. Adiabatic Formalism 

We introduce in this section an iteration scheme which, in the 
adiabatic context, is also known as superadiabatic renormalization: ~3"~4~ 
For t E [0, 2n], we start with 

Ho(t) - Ho + W(t) (3.12) 

where Ho satisfies S and W(t) satisfies R~, k~> 1, so that Lemma 3.1 
applies. The spectral projectors of Ho(t) are denoted by 

1 ~r o P~ = --~i~i Ro(t, 2) d2 (3.13) 

where Ro(t, 2 ) = ( H o ( t ) - 2 )  -~ and F ~ encircles the spectral set a ~  
such a way that (3.4) and (3.5) hold (with the obvious change of notation). 
We define the operator 

Ko(t) = ~ P~ P~ (3.14) 
j = l  

which is bounded and strongly C k- t by Proposition 3.1. At the qth step, 
k -  1 >~q/> 1, we set 

H~(t) - Ho(t) + iK u_ ~(t) (3.15) 

which satisfies S as well. Thus we can define its spectral projectors by 

Pq(t) = -~ini Rq(t, 2) d2 (3.16) 

where Rq(t, ) . ) = ( H q ( t ) - ) . )  - l  and F q encircles the spectral set aq(t) in 
such a way that (3.4) and (3.5) hold. Similarly, we define 

Kq(t) = )" Pq(t) Pq'(t) (3.17) 
j = l  

Using Proposition3.1 iteratively, we find that Hq(t) is strongly C ~-q, 
whereas Kq(t) is strongly C k-u-~,  so that this scheme is well defined 
provided q ~< k - ]. 

Let Vq(t) be the solution of the Schr6dinger-like equation for 
t~ [0, 2~] 

iVlq(g) = ( H q ( t )  - iKq( l ) )  Vq( l ) ,  Vq(O) = I (3 .18)  
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L e m m a  3.3. For any q<~k- 1, the operator Vq(t) is unitary, maps 
D into D, and satisfies (3.18) strongly on D. Moreover, 

Vq(t) Pq(O) = Pq(t) Vq(t) 

for any t e [0, 2x] and any j =  1 ..... or. 

Remark. The first part of the lemma is nontrivial for q = k -  1, since 
Kk_l(t) is not differentiable. The second part generalizes standard 
results "5'~61 which hold for a finite number of projectors. 

C o r o l l a r y  3.1. If W(t) is 2n-periodic and q ~< k - 1 ,  

~.c(v.(2=)) = 

ProoL The operators Hq(t) are 2x-periodic since their construction is 
local. Hence we have 

so that 

P](2x)=P~(O) (3.19) 

[ Vu(2X), Pq(0)] =0,  Yj= 1 ..... oo (3.20) 

Since the orthogonal subspaces P q ( 0 ) ~  are finite-dimensional, Vu(2x) has 
pure point spectrum. | 

Let us now evaluate the difference between U(2x) and Vq(27Q. For 
~0 ~ D we compute [see (3.12)] 

i(V~-t(t) U(t)~0)' = Vq ' ( t )[  -Hq(t)  + iKq(t) + Ho(t)] U(t)go 

= iV~ ~(t)[Kq(t) - Kq_ ,(/)] U(t)~p (3.21) 

Hence 

U(t) -  Vq(t)= Vq(t) ds V~(s)[Kq(s)-Kq_~(s)] U(s) (3.22) 

In order to apply the Birman-Krein theorem, (zJ it remains to show that the 
trace norm of U ( 2 x ) -  Vu(2x) is finite. This will be true if we show that 

sup IlKq(t)- Kq_ ,(t)ll] ~< c (3.23) 
t e  [0.2n] 

where I1"11, stands for the trace norm. 
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Estimations in the Trace Norm 

We first note that 

K q ( t ) - K q _ , ( t ) =  ~. [ e q ( t ) P q ' ( t ) - e q - ' ( t ) P q - " ( t ) ]  (3.24) 
j = l  

where the operators P~(t) Pq ' ( t ) -  Pq- l(t) Pq- I'(t) are degenerate. And 
since Hq(l) and Hq_ 1(0 satisfy the spectral hypothesis S, we have 

dimRan(Pq(t) P~'(t)-Pq-'(t)Pq-~'(t))<<.cj/~ (3.25) 

Our main tools to perform estimations in the trace norm are the following 
lemmas to be found in ref. 15, p. 521. 

L e m m a  (i). If T is degenerate, [ITI[~ ~<dim Ran(T)[ITI[. 

L e m m a  (ii). If IIT,,-T[I--*0 as n--.oe and [IT,,III~<M uniformly 
in n, then II TII~ ~< M. 

We now state the main proposition of this section. 

Proposit ion 3.2. The projectors Pq(t) defined by (3.16) satisfy 

( d ) "  P q- ' ( t ) ]  c -~ Pq-m(t)[P](t) - ~<j(q+l)~ 
for any n and q such that n + q ~< k, and 

(0) 
Ot P q ( t ) [ P q ( t ) P ~ ' ( t ) - P q - ' ( t ) ] z ~ - " ( t ) ]  ~<j'q+"" 

for any n and q such that n + q + l ~ < k .  

Corollary 3.2. F o r q < ~ k - 1  
C 

IIPT(t) P~ ' ( t ) -  P~- ' ( t )  Pq- "(t)[I ~<j(u+ l~= 

Proof. 

Pq(t) P q ' ( t ) -  P~. - ' ( t )  P~.- " ( t )  

= Pq(t)EPq(t) Pq'(t) - P~ - l(t) Pq- " ( t ) ]  

+ Pq(t) Pq- ' ( t )  Pq- " ( t )  - eq-  '( t) eq-  '( t) e~-  " ( t )  

= Pq(t)[P~(t) P~'(t) - P~- ' ( t)  P~- " ( t ) ]  

+ {Pq-  ' ( t ) [P~(t)  - Pq- ' ( t) ]  }* eq- "(t) (3.26) 

where IIPq-t'(t)ll ~<c [see (3.10)]. | 

822/75/5-6-11 
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We can now end the proof of Theorem 2.1. On the one hand, using 
Lemma (i) and the above corollary, 

n n 

~= [Pq(t) Pq'(t)-Pq-'( t)P~-"(t)] <.c ~ j(qJ~',,,<~M<~ (3.27) 
j 1 1 j = l  

where M is independent of n, provided (q + 1 )ce-/3 > 1. On the other hand, 
tl 

q' q- (t) Pq - i ' ( t ) ]  Z [PT(t) P~ ( t ) -  Pj ' 
j=, 

- ~. [eq( t )  eq'(t)- P~-'(t) p7-"(t)] 
j = l  

~-~ 1 --*0 as n --* oo (3.28) <~C n+ jlq+ll"""""~ 
j =  1 

provided (q+  1)~> 1. In view of Lemma (ii) and Corollary 3.1, we can 
conclude by the Birman-Krein theorem c2~ that a a c ( U ( 2 n ) ) = ~  if 
k c t - f l > l ,  s i n c e q ~ < k - l .  I 

4. T E C H N I C A L I T I E S  

We present in this final section the proofs of the results stated in the 
previous section. 

Proof of Lernma 3.2. Let us show that G(t) is bounded for any ~ > 
/~ >~0. We consider G(t) as an infinite matrix in the orthonormal basis 

, j= ,  . . . . . . .  s.t. Pj(t) $j' ,(t)= r  (4.1) 

Its matrix elements are given by 

,,,.,,k ,,k t gj., ( t ) -  (r ( )5 

= O}'J(t) ~ Aj(t, 2) R(t, 2) d2 Pk(t) O~(t) (4.2) 

I f j  4: k, we have, using the first resolvent identity and the Cauchy formula, 

{r Aj(t, 2) R(t, 2) d2 Pk(t) 

- ~---~ii~r,~r, Aj(t, 2)R(t, 2)R(t, la)d2d~ 
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As a consequence of the spectral hypothesis S, ~l~ 

12-1~l>~c((j+l)'+(j+2)'+...+k')>~clj'+l-k'+'l (4.4) 

so that by virtue of the hypothesis and our choice of paths (3.4), (3.5) we 
get the estimate 

C 
"J'"~ (4.5) gj, k ( t)<~lj ,+t_k=+t I 

I f j = k ,  we have 

C n : . n j  g)..i (t) <~)-~ (4.6) 

According to the Schur condition (ref. 15, Example 2.3, p. 143), 

IIG(t)ll ~<max sup [gj.k (t)l, sup Igy.k (t)l 
\ j ,  nj k = l  k.nk j = l  

nk n i 

(4.7) 

Thus, since nk <<, ck ~, we have to show that 

sup I I 'J " + ' - k ~ + l ' < ~  and sup < ~  
J k = l  J J 

k v ~ j  

(4.8) 

But it is proven in the Appendix of ref. 10 that, for ct > fl, 

k~ 
k=t I J ' + ' - k ' + l l - C ( J t ~ - ~ l n j )  
k ~ j  

(4.9) 

so that (4.8) is indeed true provided ct>fl>~0. To prove the strong 
continuity of G(t), we introduce the strongly continuous approximations 

Gu( t )=  ~ Pj(t)~-~i~i Aj(t, 2)R(t, 2)d2 (4.10) 
j = l  

Applying the Schur condition again, and (4.9), we obtain 

lim sup IIGN(t)-G(t)II=O (4.11) 
N ~ o ~  t e [ 0 , 2 n ]  

if ct>fl~>0, which shows that G(t) is strongly continuous. Indeed, the 
conditions to verify are 
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, 0 sup '--r + 1 "~- N ~ : '  

j > N  k 1 - -  [ 
k # j  

JP jP 
sup [Ja+ l -~ka+ II + sup N~oo 

k j = N + I  j > N " ~  I, 0 
j # k  

(4.12) 

(4.13) 

According to (4.9), (4.12) is true if ~>fl~>0 and the sum in (4.13) can be 
estimated by 

o~, j~ ~ jp  

sup ~ i j = + t _ k = + l l + s u p  �9 k < N j = N + I  k>Nj=N+I/" [ J ~ + l - - k = + l [  
jvak . /#k  

~</=u+t [J ~+l-N=+l-  I +SUPk>N/=u+I i j : + l _ k = + r  I (4.14) 
j ~ ' k  

where both terms are (9(N a - :  in N) again. 
To consider the differentiability of G(t) when B(t) and A/(t, 2) are 

strongly C1, we also introduce the projector 

N 

/Iu(t)=I-- ~ P/(t) (4.15) 
j = l  

By (3.6) and a standard application of the Cauchy formula, we can write 

H~v(t)=}-~m. _. idt lR(t ,~u+iq)B'(t)R(t ,~N+iq) (4.16) 

where ~N lies on the real axis between aN and aN+ 1. Hence 

/ l c /  
1l/7;v(t)ll ~<c IlB'(t)ll dq cNZ,+q2 <~-~-g dy <~N--- ~ 

-~_ _~ 1 + ) -  
(4.17) 

Let us compute 

--at / ~P/(t)~ni A/(t, 2)R(t, 2)d2 

N 1 
= ~ [P~(t) P/(t)+ P/(t) P~(t)] ~n/~,rj Aj(t, 2) R(t, 2) d2 

j=l 

+ ~ P/(t) znl Jr, [Aj(t, 2) -- A/(t, X) R(t, 2) B'(t)] R(t, 2) d2 
]= I 
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= ~ Pj(t) [Pj(t)Aj(t, 2)+A)(t, 2)-Aj( t ,  2) R(t, 2) B'(t)] 
j = l  

x R(t, 2) d2 

N N 

+ ~ P'k(t) Pk(t) ~ Pj(t)~rAj(t, 2) R(t, 2) d2 
k = !  j = l  

Now, using the definition (4.15), 

N N 

Y', P~(t)+ H'u(t)= Y" P~(t) Pj(t)+ Pj(t)P~(t)+ H'u(t)=O 
j = l  j = l  

so that 

(4.18) 

(4.19) 

N N 

Pj(t) Pj(t) = - Z Pj(t) Pj(t) - H'N(t) (4.20) 
j = l  j = l  

Consequently, the last term of (4.18) can be written as 
N 

- ~ Pk(t) P'k(t) GN(t)-- H'u(t) Gu(t) 
k = l  

= -Go.u( t )  GN(t) -- H'u(t) Gu(t)  (4.21) 

where Go, u approximates Go(t) as in (4.10) (see the remark below 
Lemma 3.2). We have thus proved the formula, with a similar notation, 

G'u(t)=G,.N(t)--Go.N(t)GN(t)--H'u(t)GN(t) (4.22) 

where Gl.u(t) tends to Gl(t) in norm and uniformly in t~ [0, 2~] by our 
hypothesis on IIAj(t, 2)ll. On the other hand, 

G(s) I',o = GN(s)l',o + [ G ( s ) -  GN(s)] I',o 

= f'  G'N(s) ds + EG(s) - Gu(s)]  I',o 
" t  o 

f' = [Gl.u(s)- Go, N(s) GN(S)- H'u(s) GN(s)] ds 
o 

+ [G(s) - Gu(s)]  [',o (4.23) 

where the integrand tends to Gt(s)-Go(s)G(s) in norm and uniformly in 
s t  [0, 2g], by (4.11) and (4.17). Thus we can take the limit N ~  ~ inside 
the integral in the above equation, which eventually yields 

f,'o G,(s) G( t ) -  G(to) = - Go(s) G(s) ds I (4.24) 
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Proof of Lemma 3.3. In order to simplify the notation, we drop the 
indices q so that we are led to consider 

H(t) = n o + B(t) (4.25) 

where /4o satisfies S with cc > ,8/> 0, B(t) satisfies R l, and the operator 

K(t) = ~ Pj(t) P~(t) (4.26) 
j = l  

where Pj(t) is defined by (3.3). We first have to show that there exists a 
unitary operator V(t) strongly C ~ on D, mapping D into D such that for 
any ~0eD and t e R  

iV'(t)q~ = [Hi t )  - iK(t)] V(t)~o, V(0) = I (4.27) 

Note that as K(t) is strongly continuous only, we cannot invoke 
Theorem X70 of ref. 19 directly. We shall instead make use of a theorem of 
perturbation of evolution operators, Theorem 3.4 p. 198, in ref. 16. Since 
H'(t) = B'(t) is bounded, there exists a unitary U(t) with the above proper- 
ties such that 

iU'(t)q~=H(t) U(t)q~, U(0) = I (4.28) 

if ~0 e D. Then, according to the above-mentioned theorem, there exists a 
unitary V(t) associated with (4.27) possessing the required properties, 
provided the perturbation K(t) and the operator H(t)K(t)R(t, 0) are 
bounded and strongly continuous. Let ~0 e D. We have for any j /> 1 

H(t) Pj(t)~o = Pj(t) H(t)q~ (4.29) 

so that (applying Lemma 1.3, p. 178, ref. 16, for example) 

[H'(t) Pj(t)+H(t)P)(t)]~o=[P~(t)H(t)+Pj(t)H'(t)]q~ (4.30) 

Hence we compute, using (4.25) and the completeness of the projectors 
Pj(1), 

H(t) K(t) R(t, O) 

= ~ Pj(t) H(t) P[~(t) R(t, O) 
j=n 

= ~ Pj(t)[P}(t) H(t) + pi(t) B'(t) - B'(t) Pj(t)] R(t, O) 
j=l 

= ~ [Pj(t) P)(t) + Pj(t) B'(t) R(t, 0)-- Pj(t) B'(t) R(t, O) Pj(t)] 
i=1  

=K(t)+ B'(t) R(t, 0 ) -  ~. Pj(t) B'(t) R(t, O) Pj(t) (4.31) 
. i =  1 
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The last operator is bounded, 

o~ 2 

j~= Pj(t) B'(t) R(t, O) Pj(t)cp 
1 

= ~ IlPj(t) B'(t) R(t, O) Pj(t)~oll z 
j = l  

~< ~ IIPj(t) B'(t) R(t, 0)1[ 2 IIPj(t)~0[I z 
j = l  

<~ IIB'(t) R(t, 0)112 ~ IIPi(t)q~ll 2 
j = l  

= IIB'(t) R(t, 0)112 I1~o11-" (4.32) 

and strongly continuous since it is a sum of strongly continuous operators 
converging uniformly in t ~ [0, 2x]. Indeed, it is sufficient to note that 

Ilei(t)q>ll  z 
j = N + I  

= I1(I-H~(t))~oll z 

= l I I -1 lu (O) -  fl ds lI'u(s)l q~ l z 

~< IIEI_ H,~(0)_]~II2+~_; I1~oll 2 u ~ %  0 (4.33) 

uniformly in t E I-0, 2x], according to (4.17). 
To prove the intertwining property 

V(t)Pj(O)=Pj(t) V(t), Vt~[O, 27t] and Yj~>l (4.34) 

we approximate V(t) by evolution operators Vu(t), N =  1 ..... ~ ,  associated 
with the equations 

iV'u(t)~o = [H(t)  - iKu(t)- illN(t) //~,(t)] V/v(t)q), 

where q ~ D a n d  t e R a n d  

N 

Ku(t) = Z 
j = l  

VN(0 ) = I (4.35) 

Pj(t) P)(t) = Go.u(t) (4.36) 
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As above, we deduce that VN(t) are unitary, strongly C ~ on D, and map 
D into D since Hu(t) commutes with H(t) and 

N 

Pj(t)+ HN(t)=I (4.37) 
j = l  

Moreover, since we deal with a finite number of projectors, we have the 
standard property (see, e.g., ref. 16, w Chapter IV) 

Vu(t) Pj(O) = Pj(t) Vu(t ) Vj= 1 ..... N 
(4.38) 

VN(I ) HN(O)=HN(t) VN(t ) Vt~ [0, 2n] 

We compute 

V(t) Pj(O)-Pj(t) V(t)= [ V ( t ) -  Vu(1) ] p~(o)-Pi(t)EV(t ) -  VN(t)] 

+ [Vu(t) Pj(O)-Pj(t) Vu(t)] (4.39) 

where the last bracket vanishes ifj<~N. Then, for any ~o~D, 

0 
i ~  [V,~'(t) V(t)q~] = iV~'( t )[KN(t)-K(t)+Hu(t)H~,( t )]  V(t)~o (4.40) 

so that 

IIV(t)- VN(t)II <~ ds IIKN(s)-K(s)+HN(s)H'u(s)I[ (4.41) 

But the integrand tends to zero uniformly in s as N tends to infinity [see 
(4.11) and (4.17)] so that 

lim II V(t ) -  VN(t)l[ = 0  Yt~ [0,2~] (4.42) 
N ~ r ~  

Consequently, we deduce from (4.39) that V(t) Pj(O)- Pj(t) V(t) = 0 for 
anyj~>l  and any t e [ 0 , 2 n ] .  | 

Proof of Proposition 3.2. The proof is by induction. Let us recall 
that W(t) is strongly C k and q < . k -  1. We first note that, at the cost of a 
possible relabeling, we can assume that for j large enough the spectral sets 
a}(t), s = 0 ,  1 ..... q +  1, can be surrounded by the same path F i such that 

IFjl <~ cj ~ 
(4.43) 

dist (Fj ,  ~ )a j ( t ) )>~c j  ~, s = 0 , 1  ..... q + l  
j =  I 
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Indeed, H~.(t) = Ho(t) + iKs_ l (t), where 

max sup Ilgs_i(t)ll<~c (4.44) 
s = l , . . . , q + l  t ~ [ 0 . 2 ~ ]  

W e  set, using the second resolvent identity, 

T~(t)=- P~+ ' ( t ) -  e]( t )  

_ 1_~. [Ru+,(t, 2 ) -Ru( t ,  2)]d2 
2~zi r, 

l ~r ' - ~ Rq(t, 2)[Kq( t ) -  Kq_ ~(t)] Rq+ t(t, 2) d2 (4.45) 

Lemma 4.1. 

(a) T~(t) = P~+'(t) T~(t) + TT(t) PT(t) 
(b) P]+ '(t) Tq(t) = p7+ '(t) Pq(t) Tq(t)[l - Tq(t)] - '  

Proof. (a) Since the operators P~(t) are projectors, we can write 

Hence 

(b) 

Pq+ ' ( t )  = [P)~(t) + T q ( t ) ]  -' 

= P~(t) + Pq(t) T7(t) + T'/(t) P'/(t) + Tq(t) T7(t) (4.46) 

so that 

Pq+)(t) T~(t)[-I- Tq(t)] = P~+ I(t)Pq(t) T T(t) (4.49) 

From (4.45) and (4.43) we obtain the estimate 

II TI(/)II <~ c ~,_ R~(t, ),)[K~(t) - K~ , ( t ) ]  R~ + ,(t, ,~) d). 

1 c 
.< c IGI ~:5~ IIKq(t)- Kq_ ,(t)ll ~< j---~ (4.50) 

which shows that forj  large enough the operator [I - T~(t)] is invertible. II 

T~(t) = [Pq(t) + Tq(t)] T~(t) + T~(t) P7(t) (4.47) 

For the same reason we have 

Pq+'(t) Tq(t)=Pq+l(t)[Pq(t)+ TT(t)] TT(t ) 

=P~+ ' ( t )  Pq(t) Tq(t)+ PT+'(t ) Tq(t) Tq(t) (4.48) 
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Remark. 
ness of P'j(t) the following estimate fo r j  large enough: 

I1 Tj~(t)[[ ~<c [[PT(t) TT(t)I[ 

which yields the sharper estimate on IITj~(t)ll 

c 
II Tq( t ) l l  <~j(q+ 2)a 

We can deduce easily from this lemma and the self-adjoint- 

(4.51) 

(4.52) 

provided Proposition 3.2 is true. 
Let us assume the proposition holds for the index q and let us check 

its validity for q +  1. Thus we have to estimate for any n such that 
n+q+ 1 <~k [see (4.45)] 

-~] PT(t) Tq(t) = 2n r, \ ~ J  Rq(t, 2) PY(t)[Kq(t)- Kq_ ,(t)] 

x Rq+ l(t, 2) d2 (4.53) 

We compute 

Pq(t)[Kq(t)-Kq_l(t)] 

= Pq(t)[Pq(t) Ku(t ) - pq-l(t) Kq_ l(t)] 

+ Pq(t) pq- '(t) Kq_ i ( t ) -  PT(I) Kq_ ,(t) 

= P7 (t)[Pq(t) P7 '(t) - PT-'(t) P~-"(t)] 

- Pq(t) T ]-  '(t) Kq_ ~(t) (4.54) 

Using property (b), we get 

0)" 
~ j  P'/(t) T~(t) 

=2-~n \ ~ }  Rq(t, 2)Pq(t)[Pq(t)PT'(t)-U-~(t)Pj ~'(t)] 

x R~+l(t, 2) d2 

Y' '(') 

x Tq- t ( t ) [ I -  Tq.-~(t)]-l Ku_~(t) Rq+~(t, (4.55) 
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By the Leibnitz formula or Eq. (2.36) in ref. 14, the nth time derivative of 
Rs(t, 2) for s = 0  ..... q +  1 is given by a sum of products of operators R.~(t, ).) 
and (0), (0), 

~t H,(t)= -~ w(t )+i  ~ K.~_,(t), 1= I ..... n (4.56) 

Hence, provided n + q +  1 <~k (see Section 3.2), and making use of (4.43), 
we get 

-~ R,(t, ~<7; and ~ P~(t)<~-f~, n>~l (4.57) 

for s = 0,..., q + 1. The same argument can be applied to estimate the nth 
time derivative of [I - T~-~(t)] -t.  Indeed, fo r j  large enough, 

[ l - T T - l ( t ) ] - I ' = [ l - T q - l ( t ) ]  - 1 T q - I ' ( t ) [ I - T 7 - ' ( t ) ]  -I (4.58) 
.I 

and 

Tq-l(t)=2-~n r,(-~) R"- ' ( t '2 )[Kq- ' ( t ) -Kq-2( t ) ]  Rq(t'2)d2 

(4.59) 

so that 

(o)n 
N l - l - r ~ - I ( t ) ]  - '  <.c, Vn+q+l<~k (4.60) 

Thus, invoking the induction hypothesis and (4.57), we get 

( d )  n c 
~ P~(t) T~(t) <~j~q+2~, V n + q + l ~ < k  (4.61) 

Now, if q + 2 ~< k, we compute 

e~ § l(tl[ t'~+ lItl e1+ " ( t l -  tT(tl e~'(t)] 
= P~.+ '(t)[Tq(t) P~'(t) + Pq+ I(t) Tq'(t)] 

= [Py+ t(t) T~'(t)] Pf( t )+  Pq+ l(t)[P~. + I(t) TT(t) ]' 

- eq+ I(t) Pq+ l '(t) rq(l) (4.62) 

where the last term can be written as 

Pq+'(t)Pq+"(t) T7(t)=P7+l'(t)[Tq(t)P~(t)] (4.63) 
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using the identity Q(t)Q'(t)Q(t)=O for any projector Q(t) and Lemma 
4.1(a). Then, by Lemma 4.1(b), 

[,,)I. + ,(t)[p~ + '(t) PI + I ' ( t ) -  Pq(t) P~'(t)] 

=Pq+'(t)[PT(t) Tq(t)][I - T7(t)] ' P7'(t) 

+ P~ + '(t){P~ + t(t)[Pj'(t) r) '(t)] [-I - rq(t)]  - ' } '  

- P7+"(t)[P7(t) T~(t)]* (4.64) 

Finally, considering the Leibnitz formula again, (4.61), (4.60), (4.57), and 

(0), {(.), }. 
[Pq(t) T•(t)]*= ~ [P~(t) Tq(t)] (4.65) 

we obtain similarly 

( O ) "  c (4.66) a7 U +'(t)EU +'(t) U +''(t)- U(t) U'(t)3 .<j(~:)~ 

for any n such that n+q+2<~k. Finally, the induction hypothesis is 
readily verified for q = I with n + 1 ~< k on 

,,,o(,) po(,)/<o(,) 
2x r, 

_ I  ~ Ro(t, 2)pO(t)pO,(t)R,(t,).)d) " (4.67) 
-27t r, 

[see (4.57) and (4.43)], which implies, as above, that it is satisfied by 

p](t)[ P)(t) P] ' ( t ) -  P~ P~'(t)] (4.68) 

with n+2<~k. I 

5. CONCLUSION 

The spectrum of the Floquet operator associated with time-periodic 
perturbations W(t)= W(t+2rt) of discrete Hamiltonians Ho has been 
considered. More precisely, let U(t) denote the unitary evolution operator 
solution of the time-dependent Schr6dinger equation with Hamiltonian 
Ho + W(t). Then the spectra of the Floquet operator and of U(2rt) are of 
equivalent nature. It was shown in particular that if the gap between 
successive eigenvalues 2.,. of the unperturbed Hamiltonian Ho grows as 
2 i -  2i- ~ "" J~ and the multiplicity of 2 i grows as j  p with ~ > fl >_- 0 as j  tends 
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to infinity, then the absolutely continuous spectrum of U(2n) is empty 
provided the perturbation W(t)is [ ( l + / ~ ) / c t ] + l  times differentiable, 
where [.-I denotes the integer part. We have used recently developed tools 
in adiabatic theory to construct unitary approximations Vq, q--- 1, 2 ..... of 
U(2rt) by iteration [provided W(t) is smooth enough,l such that the spec- 
trum of V u is pure point for any q and U(27t)-  Vq is trace class for q large 
enough. The conclusion was reached by classical results on the stability 
of absolutely continuous spectrum of unitary operators under trace-class 
perturbations. 
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